Mixture of hidden Markov models for accelerometer data
نویسندگان
چکیده
منابع مشابه
Analysis of animal accelerometer data using hidden Markov models
1. Use of accelerometers is now widespread within animal biotelemetry as they provide a means of measuring an animal’s activity in a meaningful and quantitative way where direct observation is not possible. In sequential acceleration data there is a natural dependence between observations of movement or behaviour, a fact that has been largely ignored in most analyses. 2. Analyses of acceleratio...
متن کاملMixture Hidden Markov Models in Finance Research
Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis,...
متن کاملBayesian Learning of Gaussian Mixture Densities for Hidden Markov Models
An investigation into the use of Bayesian learning of the parameters of a multivariate Gaassian mixture density has been carried out. In a continuous density hidden Markov model (CDHMM) framework, Bayesian learning serves as a unified approach for parameter smoothing, speaker adaptation, speaker clustering, and corrective training. The goal of this study is to enhance model robustness in a CDHM...
متن کاملPerfect posterior simulation for mixture and hidden Markov models
In this paper we present an application of the read-once coupling from the past algorithm to problems in Bayesian inference for latent statistical models. We describe a method for perfect simulation from the posterior distribution of the unknown mixture weights in a mixture model. Our method is extended to a more general mixture problem, where unknown parameters exist for the mixture components...
متن کاملMixture autoregressive hidden Markov models for speech signals
In this paper a signal modeling technique based upon finite mixture autoregressive probabilistic functions of Markov chains is developed and applied to the problem of speech recognition, particularly speaker-independent recognition of isolated digits. Two types of mixture probability densities are investigated: finite mixtures of Gaussian autoregressive densities (GAM) and nearest-neighbor part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Applied Statistics
سال: 2020
ISSN: 1932-6157
DOI: 10.1214/20-aoas1375